

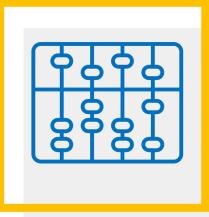
Based on: González–Cebrián, A., Bradford, M., Chis, A.E., González–Vélez, H. Standardised Versioning of Datasets: a FAIR–compliant Proposal. **Scientific Data** 11, 358 (2024). <u>https://doi.org/10.1038/s41597-024-03153-y</u>

NCI Research Day, 18 June 2024

FAIR Versioning of Datasets

FAIR Versioning of Datasets, June 2024

National College of Ireland Cloud Competency Centre

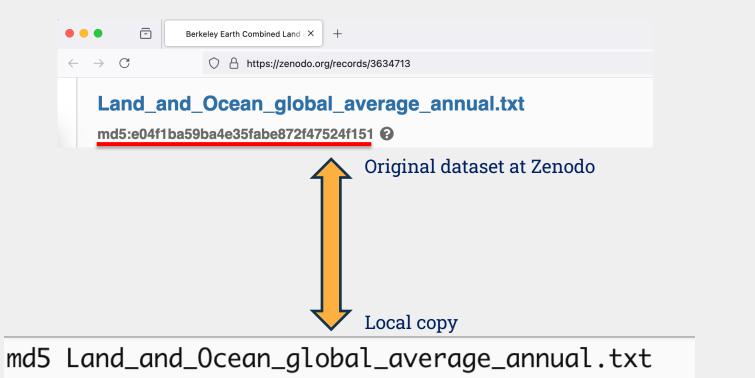


When is a dataset NOT the same?

5.94,66755.39,0,0,0,0,0 59.12,42826.99,0,0,0,0,31 35.64,50656.8,0,0,0,0,10 115.94,67905.07,0,0,0,0,0 115.94,66938.9,0,0,0,0,0,10 0192.49,86421.04,0,0,0,0,0,0,1

a record, an entry, a value, and/or a column?

Example


Rhode R & Hausfather Z. **Berkeley Earth** Combined Land and Ocean Temperature Field, **Jan 1850-Nov 2019** <u>https://zenodo.org/records/3634713</u> **Changes in Earth's global average surface temperature** estimated by combining the Berkeley Earth land-surface temperature field with a reinterpolated version of the HadSST ocean temperature field.

% relat	ive to the Jan	1951-Dec 1980	ported as anomalie average. Uncertair al undersampling e	ties represent th		e		
% Estim % Usi % Usi %	ng air temperat	ture above sea	mean temperature ice: 14.176 +/- a ice: 14.723 +/-	0.048				
% % % Year,			ir temperature abo Five-year Anomaly				perature below sea Five-year Anomaly	
1850	-0.532	0.181	NaN	NaN	-0.482	0.161	NaN	NaN
1851	-0.402	0.188	NaN	NaN	-0.368	0.166	NaN	NaN
1852	-0.399	0.167	-0.427	0.138	-0.356	0.150	-0.386	0.122
1853	-0.426	0.158	-0.390	0.118	-0.387	0.141	-0.349	0.106
1854	-0.373	0.142	-0.404	0.105	-0.337	0.127	-0.362	0.095
1855	-0.347	0.122	-0.446	0.097	-0.298	0.112	-0.401	0.087
1856	-0.475	0.127	-0.454	0.088	-0.433	0.114	-0.409	0.081
1857	-0.608	0.131	-0.460	0.082	-0.550	0.119	-0.415	0.076
1858	-0.465	0.120	-0.484	0.086	-0.426	0.111	-0.442	0.081
1859	-0.403	0.129	-0.504	0.093	-0.369	0.119	-0.461	0.089
1860	-0.469	0.121	-0.514	0.114	-0.432	0.114	-0.468	0.107
1861	-0.575	0.160	-0.505	0.128	-0.526	0.153	-0.457	0.123
1862	-0.657	0.202	-0.515	0.133	-0.586	0.185	-0.466	0.129
1863	-0.421	0.187	-0.490	0.137	-0.375	0.182	-0.441	0.136
1864	-0.454	0.142	-0.431	0.131	-0.414	0.135	-0.385	0.132
1865	-0.342	0.157	-0.353	0.123	-0.307	0.156	-0.317	0.128
1866	-0.281	0.147	-0.322	0.116	-0.244	0.146	-0.288	0.120
1867	-0.266	0.146	-0.286	0.112	-0.245	0.146	-0.254	0.115
1868	-0.270	0.128	-0.288	0.098	-0.228	0.127	-0.258	0.100
1869	-0.270	0.119	-0.306	0.087	-0.248	0.113	-0.274	0.088
1870	-0.354	0.105	-0.322	0.077	-0.325	0.100	-0.287	0.077
1871	-0.370	0.111	-0.330	0.077	-0.324	0.104	-0.297	0.074
1872	-0.344	0.115	-0.351	0.079	-0.310	0.107	-0.320	0.075
1873	-0.312	0.128	-0.365	0.081	-0.277	0.117	-0.330	0.076
107/	A 276	A 110	A 270	A A01	0 261	0 105	0 211	0 076

Example

Rhode R & Hausfather Z. **Berkeley Earth** Combined Land and Ocean Temperature Field, **Jan 1850-Nov 2019** <u>https://zenodo.org/records/3634713</u> **Changes in Earth's global average surface temperature** estimated by combining the Berkeley Earth land-surface temperature field with a reinterpolated version of the HadSST ocean temperature field.

MD5 (Land_and_Ocean_global_average_annual.txt) = e04f1ba59ba4e35fabe872f47524f151

%

%

%

% Temperatures are in Celsius and reported as anomalies

% Estimated Jan 1951-Dec 1980 global mean temperature (C) Using air temperature above sea ice: 14.176 +/- 0.048

% relative to the Jan 1951-Dec 1980 average. Uncertainties represent the 95% confidence % interval for statistical and spatial undersampling effects as well as ocean biases.

A 370

Example

Rhode R & Hausfather Z. Berkeley Earth Combined Land and Ocean Temperature Field, Jan 1850-Nov 2019 https://zenodo.org/records/3634713 Changes in Earth's global average surface temperature estimated by combining the Berkeley Earth land-surface temperature field with a reinterpolated version of the HadSST ocean temperature field.

			a ice: 14.723 +/- 0					
%	ing water tempera			.040				
20								
-0		omaly using a	ir temperature abov	e sea ice	Land + Ocean us	ing water tem	perature below sea :	ice
Year.			Five-year Anomaly,					
o rear,	Annuale Anomaley,	Annual oner,	Tive year Anomaley,	Tive year oner,	Annua e Anoma ey j	Annual oner,	Tive year Anomacy,	Tive year one
1850	-0.532	0.181	NaN	NaN	-0.482	0.161	NaN	NaN
		0.188	NaN	NaN	-0.368	0.166	NaN	NaN
1852	-0.399	0.167	-0.427	0.138	-0.356	0.150	-0.386	0.122
1853	-0.426	0.158	-0.390	0.118	-0.387	0.141	-0.349	0.106
1854	-0.373	0.142	-0.404	0.105	-0.337	0.127	-0.362	0.095
1855	-0.347	0.122	-0.446	0.097	-0.298	0.112	-0.401	0.087
1856	-0.475	0.127	-0.454	0.088	-0.433	0.114	-0.409	0.081
1857	-0.608	0.131	-0.460	0.082	-0.550	0.119	-0.415	0.076
1858	-0.465	0.120	-0.484	0.086	-0.426	0.111	-0.442	0.081
1859	-0.403	0.129	-0.504	0.093	-0.369	0.119	-0.461	0.089
1860	-0.469	0.121	-0.514	0.114	-0.432	0.114	-0.468	0.107
1861	-0.575	0.160	-0.505	0.128	-0.526	0.153	-0.457	0.123
1862	-0.657	0.202	-0.515	0.133	-0.586	0.185	-0.466	0.129
1863	-0.421	0.187	-0.490	0.137	-0.375	0.182	-0.441	0.136
1864	-0.454	0.142	-0.431	0.131	-0.414	0.135	-0.385	0.132
1865	-0.342	0.157	-0.353	0.123	-0.307	0.156	-0.317	0.128
1866	-0.281	0.147	-0.322	0.116	-0.244	0.146	-0.288	0.120
1867	-0.266	0.146	-0.286	0.112	-0.245	0.146	-0.254	0.115
1868	-0.270	0.128	-0.288	0.098	-0.228	0.127	-0.258	0.100
1869	-0.270	0.119	-0.306	0.087	-0.248	0.113	-0.274	0.088
1870	-0.354	0.105	-0.322	0.077	-0.325	0.100	-0.287	0.077
1871	-0.370	0.111	-0.330	0.077	-0.324	0.104	-0.297	0.074
1872	-0.344	0.115	-0.351	0.079	-0.310	0.107	-0.320	0.075
1873	-0.312	0.128	-0.365	0.081	-0.277	0.117	-0.330	0.076

A A01

N 261

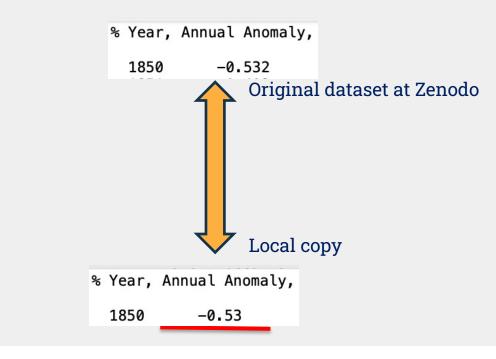
0 105

A 244

Background

1071

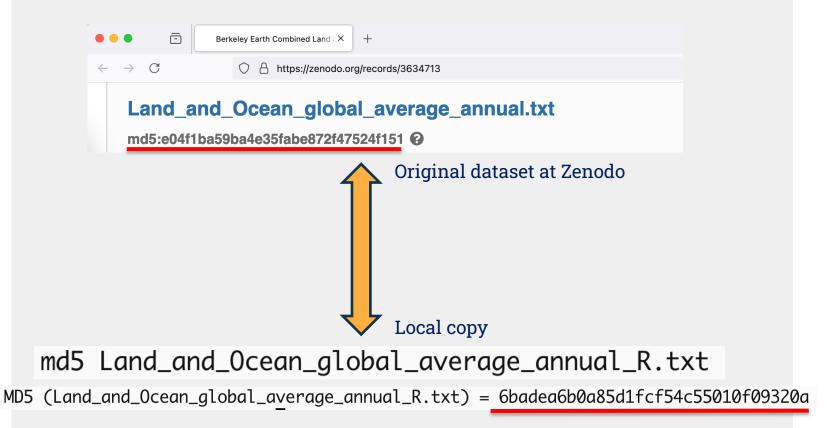
A 276


A 110

A A76

Example

Rhode R & Hausfather Z. **Berkeley Earth** Combined Land and Ocean Temperature Field, **Jan 1850-Nov 2019** <u>https://zenodo.org/records/3634713</u> **Changes in Earth's global average surface temperature** estimated by combining the Berkeley Earth land-surface temperature field with a reinterpolated version of the HadSST ocean temperature field.

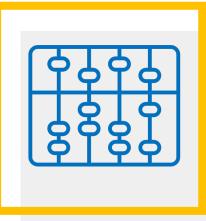


Example

Background

Rhode R & Hausfather Z. **Berkeley Earth** Combined Land and Ocean Temperature Field, **Jan 1850-Nov 2019** <u>https://zenodo.org/records/3634713</u> **Changes in Earth's global average surface temperature** estimated by combining the Berkeley Earth land-surface temperature field with a reinterpolated version of the HadSST ocean temperature field.

10 / 25



Example

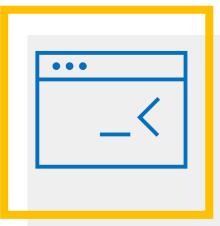
Rhode R & Hausfather Z. Berkeley Earth Combined Land and Ocean Temperature Field, Jan 1850-Nov 2019 https://zenodo.org/records/3634713 Changes in Earth's global average surface temperature estimated by combining the Berkeley Earth land-surface temperature field with a reinterpolated version of the HadSST ocean temperature field.

diff Land_and_Ocean_global_average_annual.txt Land_and_Ocean_global_average_annual_R.txt

multiple records, entries, values, and /or columns CHANGE.

Is it the SAME DATASET? Background

FAIR Versioning of Datasets, June 2024



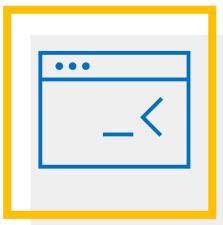
National College of Ireland Cloud Competency Centre

2. Method

Software-style

major.minor.patch

Method


Findability Accessibility Interoperability Reusability

Wilkinson M *et al.* The FAIR Guiding Principles for scientific data management and stewardship. *Scientific Data* **3** (2016).

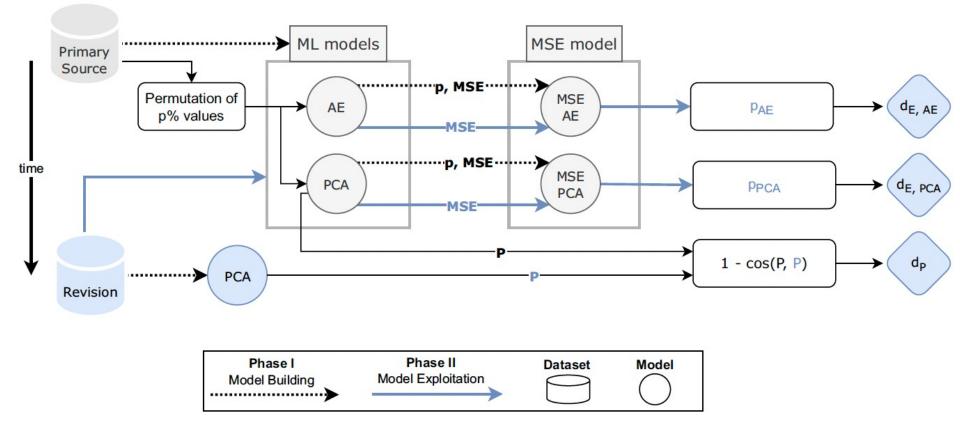
Method

Software-style Versioning

major.minor.patch

····		
Version	Meaning	Dataset property – FAIR
Major	significant and substantial changes involving modifications to the data structure , schema, or underlying data model	data interoperability and reusability
Minor	enhancements, additions, or updates that quantify change the numerical information but do not significantly disrupt the existing data structure	data drift (related to interoperability and reusability)
Patch	small, specific fixes or corrections applied to the dataset addressing inconsistencies, errors, or bugs without significantly changing the data structure or functionality	timestamping could improve findability according to periods of interest

Method



•••			
Version	Meaning	Dataset property – FAIR	
Major	significant and substantial changes involving modifications to the data structure , schema, or underlying data model	data interoperability and reusability	
Minor	enhancements, additions, or updates that quantify change the numerical information but do not significantly disrupt the existing data structure	data drift (related to interoperability and reusability)	
Patch	small, specific fixes or corrections applied to the dataset addressing inconsistencies, errors, or bugs without significantly changing the data structure or functionality	timestamping could improve findability according to periods of interest	

Method

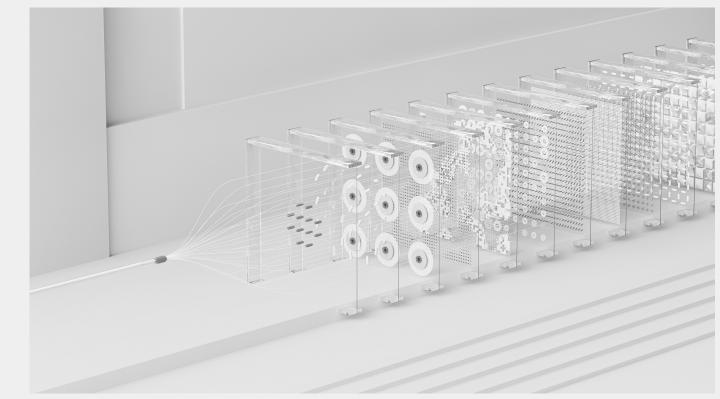
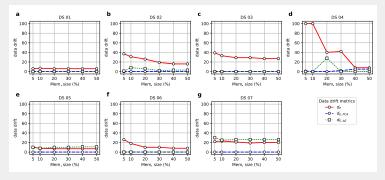


Fig. 1 Flowchart summarising our approach to quantify data drift using several strategies. Each strategy employs an ML model and an associated data drift metric. First, for a Primary Source dataset, we build ML models and predictive models based on the Mean Squared Error (MSE models), conforming the Model Building Phase. Similarly, for a Revision dataset, i.e., a new dataset version, corresponding ML models are built. These models are used during the Model Exploitation Phase to compute the associated data drift metric (e.g., Method $d_{E,AE}$, $d_{E,PCA}$, and d_p).

FAIR Versioning of Datasets, June 2024

National College of Ireland Cloud Competency Centre

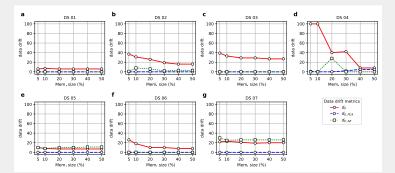
3. Results


Dataset	Records (N)	Variables (K)	
SML2010 ³¹	4,137	22	
Hungarian chickenpox cases ³²	522	20	
Global land temperature ³³	1,365	485	
Sales prediction ³⁴	64	4	
Air quality ³⁵	9,357	12	
Ozone level detection ³⁶	2,536	71	
Dublin footfall counts 2022 ³⁷	8,760	99	

N.B. Timeseries

Best Metric

The $d_{E,PCA}$ metric was the best candidate: Bounded (i.e., $d_{E,PCA} < 50$) and interpretable values in **creation** experiments: Sensitive to data model changes (i.e., $d_{E,PCA} =$ 100) in **update** experiments The most robust against the information loss (i.e., $d_{E,PCA} \approx 0$), for **deletion** experiments



Full explanation in the article

Interpretation

By calculating the data drift, the ML techniques could detect automatically a VERSION of a given datasets with variations of up to **50%** in the contents.

A TurnItIn[™] for Datasets

2022 IEEE 18th International Conference on e-Science (e-Science)

Automatic Versioning of Time Series Datasets: a FAIR Algorithmic Approach

Alba González–Cebrián*, Luke A. McGuinness*[†], Michael Bradford*, Adriana E. Chis*, and Horacio González–Vélez* *Cloud Competency Centre, National College of Ireland. [†]DTSL, Ireland. Email:{alba.gonzalez-cebrian,luke.mcguinness,michael.bradford,adriana.chis,horacio}@ncirl.ie

https://doi.org/10.1109/eScience55777.2022.00034

 www.nature.com/scientificdata

 scientific data

 @ Creck for update

 OPEN
 Standardised Versioning of

 ARTICLE
 Datasets: a FAIR-compliant

 Proposal

 Alba González-Cebrián © ^{an}, Michael Bradford, Adriana E. Chis © & Horacio González-Vélez ©

 https://doi.org/10.1038/s41597-024-03153-ty

Based on: González–Cebrián, A., Bradford, M., Chis, A.E., González–Vélez, H. Standardised Versioning of Datasets: a FAIR–compliant Proposal. **Scientific Data** 11, 358 (2024). <u>https://doi.org/10.1038/s41597-024-03153-y</u>

NCI Research Day, 18 June 2024

FAIR Versioning of Datasets