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Machine Learning as a Service
Cloud computing has been widely adopted because it allows users to acquire on-demand 

computing resources

In recent years, cloud computing has emerged as a flexible and scalable solution for 
Machine Learning (ML)
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Privacy-Preserving Machine Learning as a Service
The use of a third-party provider can bring several cybersecurity issues because the data 

are processed on a shared infrastructure

Encrypting the data with conventional encryption does not solve the problem because data 
must be decrypted for statistical analysis

Homomorphic Encryption (HE) is an alternative to address vulnerabilities and compute 
encrypted data
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Homomorphic Encryption (HE)
The jewelry store problem illustrates the HE concept 

• Alice, a shop owner, wants her workers to assemble precious materials, such as gold 
and diamonds, into intricately designed rings and necklaces

• She does not want her workers to come in direct contact with the materials since she is 
afraid that they might steal the material

Alice uses a transparent, impenetrable glovebox to solve this problem

The gloves portray the homomorphism of the encryption scheme
5
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Homomorphic Encryption (HE)
In additive and multiplicative homomorphic encryption scheme, operations on ciphertext 

space are mirrored in the plaintext space after decryption

Ciphertexts c1 and 𝑐2 encrypt the content of messages m1 and m2

• c+ is created using c1 and 𝑐2, and its decryption produces m1 + m2

• c× encrypts m1 × m2
6
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HE limitations
1) Limited number of operations. Current HE schemes support only additions and 

multiplications

• For ML, it becomes necessary to implement the comparison and division operations or 
determine the sign of a number

2) Noisy ciphertexts. Noise growth limits the number of operations that can be 
accomplished. Each ciphertext has some noise that hides the message

• If the noise is small, noise can be corrected

• If the noise is large, decryption is hopeless

Each homomorphic operation increases the underlying noises

3) Bootstrapping. It reduces the noise in a ciphertext by generating a refreshed ciphertext 
from its equivalent exhausted one

• A sophisticated and compute-intensive component 
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Logistic Regression (LR)
Logistic Regression (LR) is a statistical method for analyzing information where:
• A dataset 𝑋 ∈ ℝ𝑑 and their labels 𝑌 ∈ 0,1  are used to model a binary dependent 

variable

• The predict of a binary outcome considers the logistic function

The inference of LR considers the hypothesis ℎθ 𝑥 𝑖 = 𝑔 θ𝑇𝑥 𝑖  where

• Logistic function: 𝑔 𝑧 =
1

1+𝑒−𝑧 

• Weights: θ𝑇 = 𝜃0, 𝜃1, … , 𝜃𝑑
𝑇

• Data: 𝑥 𝑖 = [1, 𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑑
𝑖 ] 𝑇

The training phase of LR focuses on finding 𝜃∗, the values of 𝜃 that minimizes the number 
of errors in the prediction
• 𝜃∗ is used to estimate the binary classification of new data
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Logistic Regression (LR)
For 𝑥′ = [1, 𝑥1, … , 𝑥𝑑] ∈ ℝ𝑑+1 is possible to guess its binary value 𝑦′ ∈ {0,1} by 

𝑦′ = ቊ
 1 𝑖𝑓 ℎθ∗ 𝑥′ ≥ 𝜏 

0 𝑖𝑓 ℎθ∗ 𝑥′ < 𝜏

• 𝜏 defines a variable threshold in 0 < 𝜏 < 1, typically with a value equal to 0.5

Gradient Descent (GD) is the optimization process to find 𝜃∗ according to the partial derivate 
of the cost function 𝐽(𝜃), represented by 𝛻𝜃𝐽 𝜃
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Algorithm 1. Batch Gradient Descent

Input: 𝑋, 𝑌, 𝜃, 𝛼, 𝑎𝑛𝑑 𝑛𝐼𝑡𝑒𝑟.

Output: 𝜃.

1 For 𝑖 ← 1 to 𝑛𝐼𝑡𝑒𝑟
2 𝜃 ←  𝜃 − 𝛼×𝛻𝜃𝐽(𝜃, 𝑋, 𝑌)

Algorithm 2. Gradient Descent (𝛻𝜃𝐽)
Input: 𝑋, 𝑌, 𝑎𝑛𝑑 𝜃.

Output: 𝑔𝑟𝑎𝑑.

1 For 𝑖 ← 1 to 𝑠𝑖𝑧𝑒(𝑋)

2 For 𝑗 ← 1 to 𝑠𝑖𝑧𝑒(𝜃)

3 𝑔𝑟𝑎𝑑𝑗 ← 𝑔𝑟𝑎𝑑𝑗 + (𝑔(𝑥(𝑖)×𝜃) − 𝑦(𝑖))×𝑥𝑗
(𝑖)

4 For 𝑗 ← 1 to 𝑠𝑖𝑧𝑒(𝜃)

5 𝑔𝑟𝑎𝑑𝑗 ← 𝑔𝑟𝑎𝑑𝑗/𝑠𝑖𝑧𝑒(𝑋)

6 return 𝑔𝑟𝑎𝑑
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Privacy-preserving LR
The HE version of LR (HE-LR) substitutes +, -, ×, and 𝑔 for their homomorphic versions
• ത𝑋, ത𝑌, ҧ𝜃, and ത𝛼 define the corresponding ciphertexts of 𝑋, 𝑌, 𝜃, and 𝛼,
• The homomorphic version of 𝑔 ( ሷ𝑔) is a polynomial approximation with only ሷ+ and ሷ×

The sigmoid function approximation is critical to the Privacy-preserving LR performance

• A higher degree approximation provides more accurate results but with time increase. 
Meanwhile, a lower degree approximation is less accurate but faster
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Algorithm 1. Batch Gradient Descent

Input: ത𝑋, ത𝑌, ҧ𝜃, ത𝛼, 𝑎𝑛𝑑 𝑛𝐼𝑡𝑒𝑟.

Output: 𝜃.

1 For 𝑖 ← 1 to 𝑛𝐼𝑡𝑒𝑟
2 ҧ𝜃 ← ҧ𝜃 ሶ− ത𝛼 ሶ×𝛻𝜃𝐽( ҧ𝜃, ത𝑋, ത𝑌)

Algorithm 2. Gradient Descent (𝛻𝜃𝐽)

Input: ത𝑋, ത𝑌, ҧ𝜃, and 𝑎𝑣
Output: 𝑔𝑟𝑎𝑑

1 For 𝑖 ← 1 to 𝑠𝑖𝑧𝑒(𝑋)

2 For 𝑗 ← 1 to 𝑠𝑖𝑧𝑒(𝜃)

3 𝑔𝑟𝑎𝑑𝑗 ← 𝑔𝑟𝑎𝑑𝑗 ሶ+( ሷ𝑔(𝑥(𝑖) ሶ×𝜃) ሶ−𝑦(𝑖)) ሶ×𝑥𝑗
(𝑖)

4 For 𝑗 ← 1 to 𝑠𝑖𝑧𝑒(𝜃)

5 𝑔𝑟𝑎𝑑𝑗 ← 𝑔𝑟𝑎𝑑𝑗 ሶ×𝑎𝑣

6 return 𝑔𝑟𝑎𝑑
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Latest advances in Privacy-preserving LR
Table I. Main characteristics of HE and MPC approaches for privacy-preserving LR
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Approach PAD Algorithm Metric Method Dataset System Ref

HE, MPC - SGD A Paillier MNIST, notMNIST, CIFAR-10 Simulation [1]

MPC 1 BGD A Additive SSS iDASH (BC-TCGA, GSE2034) AWS [2]

MPC 1 BGD A Shamir’s SSS CIFAR-10, GISETTE Amazon EC2 [3]

MPC 1 LiR, SGD, NN Throughput Semantic SSS Superconductivity, FMA, Parkinson Google Cloud [4]

MPC - NRGD A Local training UPHS fetal loss Simulation [5]

MPC - NRGD AUC Local training Head and Neck Cancer (HNC) Local system [6]

MPC 3,5,7 NRGD A, AUC Additive SSS Synthetic, Lbw, Pcs, Pima, Uis Simulation [7]

MPC 7 SGD A Shamir’s SSS CST, ACA Simulation [8]

MPC 1
BGD, SGD, 

MGD, NGD
A, AUC RNS Lbw, Mi, Nhanes3, Pcs, Pima, Uis Simulation [9]

HE 1 NRGD AUC FV iDASH (Genomic), financial Simulation [10]

HE 7 BGD p-values, F1 CKKS iDASH Simulation [11]

HE 3 NGD A, AUC, K-S values CKKS Korea Credit Bureau (KCB), MNIST Simulation [12]

HE 3 NGD, NRGD A, AUC CKKS iDASH, Lbw, Mi, Nhanes3, Pcs, Uis Public cloud [13]

HE, MPC - SGD Overhead PHE Not described Simulation [14]

HE 7 BGD A, AUC, F1, P, R CKKS Mi, Nhanes3, Uis Simulation [15]-[17]

HE - BGD A CKKS Digits (scikit-learn library) Local system [18]

FL - SGD A, AUC Symmetric Pima, BCWD, BDM Local system [19]

FL 1 SGD Time Paillier MNIST Local system [20]

FL - LiD, RR, BGD MAE Paillier BCD, Diabetes Dataset (DD), UCID Local system [21]

FL - BGD P, R SS DD,  WIBC,  HDD,  ACAD Local system [22]
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Latest advances in Privacy-preserving LR
Table II. State-of-the-art logistic function approximations.
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Approximation function Method
𝑔1𝑎 𝑥 = 0.5 + 0.25𝑥 Taylor series

𝑔3𝑎 𝑥 = 0.5 + 1.20096(𝑥/8) − 0.81562 𝑥/8 3 Least squares
𝑔3𝑏 𝑥 = 0.5 + 0.15𝑥 − 0.0015𝑥3 Least squares

𝑔3𝑐 𝑥 = 0.5 + 𝑥/4 − 𝑥3/48 Taylor expansion
𝑔3𝑑 𝑥 = 0.499999999992724 + 0.139786538317376𝑥 − 1.45518367592346𝑒 − 13𝑥2 − 0.00100377373568484𝑥3

Chebyshev

𝑔5𝑎 𝑥 = 0.5 + 1.53048 (𝑥/8) − 2.3533056 𝑥/8 3 + 1.3511295 𝑥/8 5 Least squares
𝑔5𝑏 𝑥 = 0.500000000006453 + 0.187819515164365𝑥 − 5.65619279205865𝑒 − 13𝑥2 −  0.00336794817488311𝑥3

+5.82078097744257𝑒 − 15𝑥4 + 2.0467424332792𝑒 − 5𝑥5 Chebyshev

𝑔7𝑎 𝑥 = 0.5 + 1.73496(𝑥/8) − 4.19407 𝑥/8 3 + 5.43402 𝑥/8 5 − 2.50739 𝑥/8 7 Least squares
𝑔7𝑏 𝑥 = 0.5 + 1.735(𝑥/8) − 4.194 𝑥/8 3 + 5.434 𝑥/8 5 − 2.507 𝑥/8 7 Least squares

𝑔7𝑐 𝑥 = 0.5 + 0.249995𝑥 − 0.0207869𝑥3 + 0.00198305𝑥5 − 0.000135007𝑥7 Lagrange 

interpolation
𝑔7𝑑 𝑥 = 0.500000000015461 + 0.216030242339756𝑥 − 3.00134166245124𝑒 − 12𝑥2 − 0.00652613009889838𝑥3

+8.44014964905896𝑒 − 14𝑥4 + 9.18419138902492𝑒 − 5𝑥5 − 5.82079696725621𝑒 − 16𝑥6

−4.34913635838155𝑒 − 7𝑥7
Chebyshev

𝑔9𝑎 𝑥 = 0.500000000005353 + 0.231624826001611𝑥 − 2.49775180627496𝑒 − 12 𝑥2 −  0.0097848700927233𝑥3

+ 1.47390762630842𝑒 − 13𝑥4 + 0.000229352354062705𝑥5 − 2.60854055994519𝑒 − 15𝑥6 − 2.42773327147286e
−6𝑥7 + 1.39698499452418𝑒 − 17𝑥8 + 9.32721914680041𝑒 − 9𝑥9

Chebyshev
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Latest advances in Privacy-preserving LR
Figure 1. Logistic function approximations in the literature for the interval [-10, 10].

Table III. Characteristics of the 12 state-of-the-art logistic function approximations.
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f g1a

g3a g3b

g3c g3d

g5a g5b

g7a g7b

g7c g7d

g9a

Name 𝑔1𝑎 𝑥 𝑔3𝑎 𝑥 𝑔3𝑏 𝑥 𝑔3𝑐 𝑥 𝑔3𝑑 𝑥 𝑔5𝑎 𝑥 𝑔5𝑏 𝑥 𝑔7𝑎 𝑥 𝑔7𝑏 𝑥 𝑔7𝑐 𝑥 𝑔7𝑑 𝑥 𝑔9𝑎 𝑥

Evaluation interval [-2,2] [-8,8] [-8,8] [-2,2] [-10,10] [-8,8] [-10,10] [-8,8] [-8,8] [-1.6,1.6] [-10,10] [-10,10]

𝐿1 13.330 83.976 88.635 3.4619 158.72 41.124 90.473 17.772 17.783 0.0011 50.127 27.362

𝐿2 0.9725 2.3854 2.4841 0.3036 3.973 1.1599 2.3147 0.5058 0.5058 9.79E−5 1.2979 0.7107

𝐿∞ 0.1192 0.1143 0.0982 0.0474 0.136 0.0471 0.0894 0.0321 0.0317 1.46E−5 0.0525 0.0289

Evaluation time (ms) 6.8973 6.2826 6.6863 5.7622 24.548 20.857 41.155 32.865 32.214 32.4511 59.89 87.933
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Conclusion

We analyze the latest advances in privacy-preserving logistic regression solutions 
for processing confidential data using HE

We present the characteristics of the most recent advances in the field: 
algorithms, evaluation metrics, used datasets, approximation functions, 
implementation characteristics, etc.

We study the accuracy and execution time of the state-of-the-art polynomial 
approximations for the sigmoid function using CKKS with a security level of 
128 bits
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Questions?
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